Overcoming Ammonia Synthesis Scaling Relations with Plasma-enabled Catalysis

Prateek Mehta, Patrick Barboun, Francisco Herrera, Jongsik Kim, Paul Rumbach, David Go, Jason Hicks, William F. Schneider*

Can we make ammonia at low pressures and low temperatures?

Over half the world's population relies on ammonia-based fertilizers for food

Haber-Bosch conditions:

100-200 atm, 700-800 K Not practical for distributed small-scale production

Strategy: Direct energy into target reaction steps by an extrinsic, non-thermal stimulus

intermediates

Non-equilibrium dielectric barrier discharge (DBD) plasma

Gas ionized by an electric discharge

Comprised of reactive intermediates: free electrons, vibrationally or electronically excited molecules, ions, and radicals

Characterized by thermal non-equilibrium: T_{electron} (~10000 K) > T_{vib} (~ 1000 K) > $T_{\text{rot}} = T_{\text{trans}}$ (near-ambient)

Significant fraction of energy may be deposited into vibrational excitation of N₂

 $E_{\rm N}$ [eV]

Modeling rate enhancements by N₂

vibrational excitations Vibrational state-specific rate constants: activation energy lowered by the vibrational energy times an efficiency factor

(α, estimated by Fridman-Macheret model)

$$k_v^{(f)} = A \exp\left(-\frac{E_a^{(f)} - \alpha E_v}{k_{\rm B}T}\right) \qquad \alpha = \frac{E_a^{(f)}}{E_a^{(f)} + E_a^{(b)}}$$

We can then write $N_2 + 2^* \rightleftharpoons 2N^*$ as a series of statespecific reactions, $N_2^{(v)} + 2^* \rightleftharpoons 2N^*$ with individual $r_1(v) = k_v^{(f)} p_v P_{N_2} \theta_*^2 - k_v^{(b)} \theta_N^2$

and overall rate $\sum r_1(v)$

Vibrational populations (p_v) estimated from a truncated Treanor distribution at a vibrational temperature of 3000 K (determined by optical emission spectroscopy measurements)

Microkinetic model details:

DFT energies for surface intermediates taken from CatApp No rate-limiting step assumed, ODEs integrated to steady state

Plasma-catalytic kinetic measurements

Some NH₃ formed when N₂ and H₂ passed through plasma alone or when DBD reactor packed only with support

Rates enhanced when metal catalysts introduced

Power = 10 W, T = 438 K, P = 1 atm, N2:H2 = 2:1

Initial rates normalized (by CO accessible sites)

to obtain site-time yield (STY):

DE-SC-0016543

nature 1, 269-275, 2018

Plasma-induced vibrational excitations lower activation barrier for N₂ dissociation

Microkinetic model parametrized by experimentally measured N₂ vibrational temperature

Predicted low-temperature and pressure plasma-catalytic rates well beyond those for thermal catalysis

Enhancements greater for metals that bind N less strongly than the optimal thermal catalyst. Terrace sites may become active, resulting in more atom-efficient catalysis.

Kinetic experiments confirm rate enhancements and shift in optimal catalyst

Future challenge to disentangle other potential effects of the plasma