Reading Tabular Data into DataFrames
Overview
Teaching: 10 min
Exercises: 10 minQuestions
How can I read tabular data?
Objectives
Import the Pandas library.
Use Pandas to load a simple CSV data set.
Get some basic information about a Pandas DataFrame.
Use the Pandas library to do statistics on tabular data.
- Pandas is a widely-used Python library for statistics, particularly on tabular data.
- Borrows many features from R’s dataframes.
- A 2-dimenstional table whose columns have names and potentially have different data types.
- Load it with
import pandas
. - Read a Comma Separate Values (CSV) data file with
pandas.read_csv
.- Argument is the name of the file to be read.
- Assign result to a variable to store the data that was read.
import pandas
data = pandas.read_csv('data/gapminder_gdp_oceania.csv')
print(data)
country gdpPercap_1952 gdpPercap_1957 gdpPercap_1962 \
0 Australia 10039.59564 10949.64959 12217.22686
1 New Zealand 10556.57566 12247.39532 13175.67800
gdpPercap_1967 gdpPercap_1972 gdpPercap_1977 gdpPercap_1982 \
0 14526.12465 16788.62948 18334.19751 19477.00928
1 14463.91893 16046.03728 16233.71770 17632.41040
gdpPercap_1987 gdpPercap_1992 gdpPercap_1997 gdpPercap_2002 \
0 21888.88903 23424.76683 26997.93657 30687.75473
1 19007.19129 18363.32494 21050.41377 23189.80135
gdpPercap_2007
0 34435.36744
1 25185.00911
- The columns in a dataframe are the observed variables, and the rows are the observations.
- Pandas uses backslash
\
to show wrapped lines when output is too wide to fit the screen.
File Not Found
Our lessons store their data files in a
data
sub-directory, which is why the path to the file isdata/gapminder_gdp_oceania.csv
. If you forget to includedata/
, or if you include it but your copy of the file is somewhere else, you will get a runtime error that ends with a line like this:OSError: File b'gapminder_gdp_oceania.csv' does not exist
Use index_col
to specify that a column’s values should be used as row headings.
- Row headings are numbers (0 and 1 in this case).
- Really want to index by country.
- Pass the name of the column to
read_csv
as itsindex_col
parameter to do this.
data = pandas.read_csv('data/gapminder_gdp_oceania.csv', index_col='country')
print(data)
gdpPercap_1952 gdpPercap_1957 gdpPercap_1962 gdpPercap_1967 \
country
Australia 10039.59564 10949.64959 12217.22686 14526.12465
New Zealand 10556.57566 12247.39532 13175.67800 14463.91893
gdpPercap_1972 gdpPercap_1977 gdpPercap_1982 gdpPercap_1987 \
country
Australia 16788.62948 18334.19751 19477.00928 21888.88903
New Zealand 16046.03728 16233.71770 17632.41040 19007.19129
gdpPercap_1992 gdpPercap_1997 gdpPercap_2002 gdpPercap_2007
country
Australia 23424.76683 26997.93657 30687.75473 34435.36744
New Zealand 18363.32494 21050.41377 23189.80135 25185.00911
Use DataFrame.info
to find out more about a dataframe.
data.info()
<class 'pandas.core.frame.DataFrame'>
Index: 2 entries, Australia to New Zealand
Data columns (total 12 columns):
gdpPercap_1952 2 non-null float64
gdpPercap_1957 2 non-null float64
gdpPercap_1962 2 non-null float64
gdpPercap_1967 2 non-null float64
gdpPercap_1972 2 non-null float64
gdpPercap_1977 2 non-null float64
gdpPercap_1982 2 non-null float64
gdpPercap_1987 2 non-null float64
gdpPercap_1992 2 non-null float64
gdpPercap_1997 2 non-null float64
gdpPercap_2002 2 non-null float64
gdpPercap_2007 2 non-null float64
dtypes: float64(12)
memory usage: 208.0+ bytes
- This is a
DataFrame
- Two rows named
'Australia'
and'New Zealand'
- Twelve columns, each of which has two actual 64-bit floating point values.
- We will talk later about null values, which are used to represent missing observations.
- Uses 208 bytes of memory.
The DataFrame.columns
variable stores information about the dataframe’s columns.
- Note that this is data, not a method.
- Like
math.pi
. - So do not use
()
to try to call it.
- Like
- Called a member variable, or just member.
print(data.columns)
Index(['gdpPercap_1952', 'gdpPercap_1957', 'gdpPercap_1962', 'gdpPercap_1967',
'gdpPercap_1972', 'gdpPercap_1977', 'gdpPercap_1982', 'gdpPercap_1987',
'gdpPercap_1992', 'gdpPercap_1997', 'gdpPercap_2002', 'gdpPercap_2007'],
dtype='object')
Use DataFrame.T
to transpose a dataframe.
- Sometimes want to treat columns as rows and vice versa.
- Transpose (written
.T
) doesn’t copy the data, just changes the program’s view of it. - Like
columns
, it is a member variable.
print(data.T)
country Australia New Zealand
gdpPercap_1952 10039.59564 10556.57566
gdpPercap_1957 10949.64959 12247.39532
gdpPercap_1962 12217.22686 13175.67800
gdpPercap_1967 14526.12465 14463.91893
gdpPercap_1972 16788.62948 16046.03728
gdpPercap_1977 18334.19751 16233.71770
gdpPercap_1982 19477.00928 17632.41040
gdpPercap_1987 21888.88903 19007.19129
gdpPercap_1992 23424.76683 18363.32494
gdpPercap_1997 26997.93657 21050.41377
gdpPercap_2002 30687.75473 23189.80135
gdpPercap_2007 34435.36744 25185.00911
Use DataFrame.describe
to get summary statistics about data.
DataFrame.describe() gets the summary statistics of only the columns that have numerical data. All other columns are ignored.
print(data.describe())
gdpPercap_1952 gdpPercap_1957 gdpPercap_1962 gdpPercap_1967 \
count 2.000000 2.000000 2.000000 2.000000
mean 10298.085650 11598.522455 12696.452430 14495.021790
std 365.560078 917.644806 677.727301 43.986086
min 10039.595640 10949.649590 12217.226860 14463.918930
25% 10168.840645 11274.086022 12456.839645 14479.470360
50% 10298.085650 11598.522455 12696.452430 14495.021790
75% 10427.330655 11922.958888 12936.065215 14510.573220
max 10556.575660 12247.395320 13175.678000 14526.124650
gdpPercap_1972 gdpPercap_1977 gdpPercap_1982 gdpPercap_1987 \
count 2.00000 2.000000 2.000000 2.000000
mean 16417.33338 17283.957605 18554.709840 20448.040160
std 525.09198 1485.263517 1304.328377 2037.668013
min 16046.03728 16233.717700 17632.410400 19007.191290
25% 16231.68533 16758.837652 18093.560120 19727.615725
50% 16417.33338 17283.957605 18554.709840 20448.040160
75% 16602.98143 17809.077557 19015.859560 21168.464595
max 16788.62948 18334.197510 19477.009280 21888.889030
gdpPercap_1992 gdpPercap_1997 gdpPercap_2002 gdpPercap_2007
count 2.000000 2.000000 2.000000 2.000000
mean 20894.045885 24024.175170 26938.778040 29810.188275
std 3578.979883 4205.533703 5301.853680 6540.991104
min 18363.324940 21050.413770 23189.801350 25185.009110
25% 19628.685413 22537.294470 25064.289695 27497.598692
50% 20894.045885 24024.175170 26938.778040 29810.188275
75% 22159.406358 25511.055870 28813.266385 32122.777857
max 23424.766830 26997.936570 30687.754730 34435.367440
- Not particularly useful with just two records, but very helpful when there are thousands.
Reading Other Data
Read the data in
gapminder_gdp_americas.csv
(which should be in the same directory asgapminder_gdp_oceania.csv
) into a variable calledamericas
and display its summary statistics.Solution
To read in a CSV, we use
pandas.read_csv
and pass the filename ‘data/gapminder_gdp_americas.csv’ to it. We also once again pass the column name ‘country’ to the parameterindex_col
in order to index by country:americas = pandas.read_csv('data/gapminder_gdp_americas.csv', index_col='country')
Inspecting Data.
After reading the data for the Americas, use
help(americas.head)
andhelp(americas.tail)
to find out whatDataFrame.head
andDataFrame.tail
do.
- What method call will display the first three rows of this data?
- What method call will display the last three columns of this data? (Hint: you may need to change your view of the data.)
Solution
- We can check out the first five rows of
americas
by executingamericas.head()
(allowing us to view the head of the DataFrame). We can specify the number of rows we wish to see by specifying the parametern
in our call toamericas.head()
. To view the first three rows, execute:americas.head(n=3)
The output is then
continent gdpPercap_1952 gdpPercap_1957 gdpPercap_1962 \ country Argentina Americas 5911.315053 6856.856212 7133.166023 Bolivia Americas 2677.326347 2127.686326 2180.972546 Brazil Americas 2108.944355 2487.365989 3336.585802 gdpPercap_1967 gdpPercap_1972 gdpPercap_1977 gdpPercap_1982 \ country Argentina 8052.953021 9443.038526 10079.026740 8997.897412 Bolivia 2586.886053 2980.331339 3548.097832 3156.510452 Brazil 3429.864357 4985.711467 6660.118654 7030.835878 gdpPercap_1987 gdpPercap_1992 gdpPercap_1997 gdpPercap_2002 \ country Argentina 9139.671389 9308.418710 10967.281950 8797.640716 Bolivia 2753.691490 2961.699694 3326.143191 3413.262690 Brazil 7807.095818 6950.283021 7957.980824 8131.212843 gdpPercap_2007 country Argentina 12779.379640 Bolivia 3822.137084 Brazil 9065.800825
- To check out the last three rows of
americas
, we would use the command,americas.tail(n=3)
, analogous tohead()
used above. However, here we want to look at the last three columns so we need to change our view and then usetail()
. To do so, we create a new new DataFrame in which rows and columns are switchedamericas_flipped = americas.T
We can then view the last three columns of
americas
by viewing the last three rows ofamericas_flipped
:americas_flipped.tail(n=3)
The output is then
country Argentina Bolivia Brazil Canada Chile Colombia \ gdpPercap_1997 10967.3 3326.14 7957.98 28954.9 10118.1 6117.36 gdpPercap_2002 8797.64 3413.26 8131.21 33329 10778.8 5755.26 gdpPercap_2007 12779.4 3822.14 9065.8 36319.2 13171.6 7006.58 country Costa Rica Cuba Dominican Republic Ecuador ... \ gdpPercap_1997 6677.05 5431.99 3614.1 7429.46 ... gdpPercap_2002 7723.45 6340.65 4563.81 5773.04 ... gdpPercap_2007 9645.06 8948.1 6025.37 6873.26 ... country Mexico Nicaragua Panama Paraguay Peru Puerto Rico \ gdpPercap_1997 9767.3 2253.02 7113.69 4247.4 5838.35 16999.4 gdpPercap_2002 10742.4 2474.55 7356.03 3783.67 5909.02 18855.6 gdpPercap_2007 11977.6 2749.32 9809.19 4172.84 7408.91 19328.7 country Trinidad and Tobago United States Uruguay Venezuela gdpPercap_1997 8792.57 35767.4 9230.24 10165.5 gdpPercap_2002 11460.6 39097.1 7727 8605.05 gdpPercap_2007 18008.5 42951.7 10611.5 11415.8
Note: we could have done the above in a single line of code by ‘chaining’ the commands:
americas.T.tail(n=3)
Reading Files in Other Directories
The data for your current project is stored in a file called
microbes.csv
, which is located in a folder calledfield_data
. You are doing analysis in a notebook calledanalysis.ipynb
in a sibling folder calledthesis
:your_home_directory +-- field_data/ | +-- microbes.csv +-- thesis/ +-- analysis.ipynb
What value(s) should you pass to
read_csv
to readmicrobes.csv
inanalysis.ipynb
?Solution
We need to specify the path to the file of interest in the call to
pandas.read_csv
. We first need to ‘jump’ out of the folderthesis
using ‘../’ and then into the folderfield_data
using ‘field_data/’. Then we can specify the filename `microbes.csv. The result is as follows:data_microbes = pandas.read_csv('../field_data/microbes.csv')
Writing Data
As well as the
read_csv
function for reading data from a file, Pandas provides ato_csv
function to write dataframes to files. Applying what you’ve learned about reading from files, write one of your dataframes to a file calledprocessed.csv
. You can usehelp
to get information on how to useto_csv
.Solution
In order to write the DataFrame
americas
to a file calledprocessed.csv
, execute the following command:americas.to_csv('processed.csv')
For help on
to_csv
, you could execute, for example,help(americas.to_csv)
Note that
help(to_csv)
throws an error! This is a subtlety and is due to the fact thatto_csv
is NOT a function in and of itself and the actual call isamericas.to_csv
.
Key Points
Use the Pandas library to do statistics on tabular data.
Use
index_col
to specify that a column’s values should be used as row headings.Use
DataFrame.info
to find out more about a dataframe.The
DataFrame.columns
variable stores information about the dataframe’s columns.Use
DataFrame.T
to transpose a dataframe.Use
DataFrame.describe
to get summary statistics about data.